

AL4RPV-50, HELIAX® Plenum Rated Air Dielectric Coaxial Cable, corrugated aluminum, 1/2 in, Red PVC jacket

• This product is part of the CommScope Wired for Wireless® Solution

Product Classification

Product Type Air coaxial cable

Product Brand HELIAX®
Product Series AL4-50

Ordering Note CommScope® standard product (Global)

General Specifications

Flexibility Standard

Jacket Color Red

Performance NoteAttenuation values typical, guaranteed within 5%

Dimensions

 Diameter Over Jacket
 15.748 mm | 0.62 in

 Inner Conductor OD
 4.572 mm | 0.18 in

 Outer Conductor OD
 14.046 mm | 0.553 in

Nominal Size 1/2 in

Electrical Specifications

Cable Impedance 50 ohm ±2 ohm

Capacitance 75.459 pF/m | 23 pF/ft

dc Resistance, Inner Conductor1.575 ohms/km | 0.48 ohms/kftdc Resistance, Outer Conductor1.575 ohms/km | 0.48 ohms/kft

dc Test Voltage 4000 V

 $\label{eq:local_$

Insulation Resistance 100000 MOhms-km

Jacket Spark Test Voltage (rms) 5000 V

Operating Frequency Band 1 - 6000 MHz

Peak Power 40 kW

Page 1 of 4

Power Attenuation	2.325
Pulse Reflection	0.5%
Velocity	88 %

Attenuation

Frequency (MHz) Attenuation	(dB/100 m) Attenuation	(dB/100 ft) Average Power (kW)
1.0 0.216	0.066	35.37
1.5 0.264	0.081	28.84
2.0 0.306	0.093	24.95
10.0 0.691	0.211	11.04
20.0 0.985	0.3	7.75
30.0 1.213	0.37	6.29
50.0 1.581	0.482	4.83
85.0 2.087	0.636	3.66
88.0 2.126	0.648	3.59
100.0 2.274	0.693	3.35
108.0 2.368	0.722	3.22
150.0 2.821	0.86	2.7
174.0 3.054	0.931	2.5
200.0 3.292	1.003	2.32
204.0 3.327	1.014	2.29
300.0 4.104	1.251	1.86
400.0 4.808	1.465	1.59
450.0 5.134	1.565	1.49
460.0 5.197	1.584	1.47
500.0 5.445	1.659	1.4
512.0 5.517	1.682	1.38
600.0 6.032	1.839	1.26
700.0 6.583	2.007	1.16
800.0 7.105	2.166	1.07
824.0 7.227	2.203	1.06
894.0 7.574	2.308	1.01
960.0 7.892	2.405	0.97
1000.0 8.081	2.463	0.94
1218.0 9.068	2.764	0.84

Page 2 of 4

1250.0	9.207	2.806	0.83
1500.0	10.256	3.126	0.74
1700.0	11.053	3.369	0.69
1794.0	11.416	3.48	0.67
1800.0	11.439	3.487	0.67
2000.0	12.192	3.716	0.63
2100.0	12.559	3.828	0.61
2200.0	12.92	3.938	0.59
2300.0	13.276	4.046	0.57
2500.0	13.975	4.259	0.55
2700.0	14.656	4.467	0.52
3000.0	15.649	4.77	0.49
3400.0	16.928	5.159	0.45
3600.0	17.551	5.349	0.43
3700.0	17.859	5.443	0.43
3800.0	18.164	5.536	0.42
3900.0	18.467	5.628	0.41
4000.0	18.768	5.72	0.41
4100.0	19.066	5.811	0.4
4200.0	19.363	5.902	0.39
4300.0	19.658	5.991	0.39
4400.0	19.951	6.081	0.38
4500.0	20.241	6.169	0.38
4600.0	20.531	6.257	0.37
4700.0	20.818	6.345	0.37
4800.0	21.104	6.432	0.36
4900.0	21.388	6.519	0.36
5000.0	21.671	6.605	0.35
6000.0	24.42	7.443	0.31

Material Specifications

Dielectric MaterialPE splineJacket MaterialPVC

Inner Conductor Material Copper-clad aluminum wire

Outer Conductor Material Corrugated aluminum

COMMSCOPE®

Mechanical Specifications

Minimum Bend Radius, multiple Bends127 mm | 5 inMinimum Bend Radius, single Bend63.5 mm | 2.5 in

Number of Bends, minimum 15

 Tensile Strength
 79 kg | 174.165 lb

 Bending Moment
 5 ft lb | 6.779 N-m

Flat Plate Crush Strength 1.429 kg/mm | 80 lb/in

Environmental Specifications

Installation temperature-5 °C to +60 °C (+23 °F to +140 °F)Operating Temperature-20 °C to +85 °C (-4 °F to +185 °F)Storage Temperature-20 °C to +85 °C (-4 °F to +185 °F)

Attenuation, Ambient Temperature68 °F | 20 °CAverage Power, Ambient Temperature104 °F | 40 °CAverage Power, Inner Conductor Temperature212 °F | 100 °C

Fire Retardancy Test Method NFPA 262/CATVP/CMP

Packaging and Weights

 $\textbf{Cable weight} \hspace{1.5cm} 0.208 \hspace{.05cm} \text{kg/m} \hspace{.1cm} \mid \hspace{.1cm} 0.14 \hspace{.05cm} \text{lb/ft}$

