

Heat Treated FSJ2RK-50, HELIAX® Superflexible Foam Coaxial Cable, corrugated copper, 3/8 in, black non-halogenated, fire retardant polyolefin jacket

#### **Product Classification**

 Product Type
 Coaxial wireless cable

 Product Brand
 HELIAX® | SureFlex®

**Product Series** FSJ2-50

General Specifications

**Flexibility** Superflexible

Jacket Color Black

Performance Note Attenuation values typical, guaranteed within 5%

**Dimensions** 

 Diameter Over Dielectric
 7.112 mm | 0.28 in

 Diameter Over Jacket
 10.922 mm | 0.43 in

 Inner Conductor OD
 2.794 mm | 0.11 in

 Outer Conductor OD
 9.652 mm | 0.38 in

Nominal Size 3/8 in

**Electrical Specifications** 

**Cable Impedance** 50 ohm ±1 ohm

 $\textbf{Capacitance} \hspace{1.5cm} 80 \hspace{.1cm} pF/m \hspace{.1cm} | \hspace{.1cm} 24.384 \hspace{.1cm} pF/ft$ 

dc Resistance, Inner Conductor4.232 ohms/km | 1.29 ohms/kftdc Resistance, Outer Conductor4.987 ohms/km | 1.52 ohms/kft

dc Test Voltage 2300 V

 $\label{eq:local_potential} \text{Inductance} \qquad \qquad 0.2 \, \mu \text{H/m} \; \mid \; 0.061 \, \mu \text{H/ft}$ 

**Insulation Resistance** 100000 MOhms-km

Jacket Spark Test Voltage (rms) 4000 V

**Operating Frequency Band** 1 – 13400 MHz

Peak Power 13.2 kW

Page 1 of 5

Velocity 83 %

#### Attenuation

| Frequency (MHz) | Attenuation (dB/100 m) | Attenuation (dB/100 ft) | Average Power (kW) |
|-----------------|------------------------|-------------------------|--------------------|
| 1.0             | 0.383                  | 0.117                   | 13.2               |
| 1.5             | 0.469                  | 0.143                   | 13.2               |
| 2.0             | 0.542                  | 0.165                   | 13.2               |
| 10.0            | 1.219                  | 0.372                   | 6.97               |
| 20.0            | 1.732                  | 0.528                   | 4.91               |
| 30.0            | 2.128                  | 0.649                   | 3.99               |
| 50.0            | 2.762                  | 0.842                   | 3.08               |
| 85.0            | 3.626                  | 1.105                   | 2.34               |
| 88.0            | 3.691                  | 1.125                   | 2.3                |
| 100.0           | 3.943                  | 1.202                   | 2.16               |
| 108.0           | 4.103                  | 1.25                    | 2.07               |
| 150.0           | 4.864                  | 1.482                   | 1.75               |
| 174.0           | 5.254                  | 1.601                   | 1.62               |
| 200.0           | 5.65                   | 1.722                   | 1.5                |
| 204.0           | 5.709                  | 1.74                    | 1.49               |
| 300.0           | 6.99                   | 2.13                    | 1.22               |
| 400.0           | 8.139                  | 2.481                   | 1.04               |
| 450.0           | 8.665                  | 2.641                   | 0.98               |
| 460.0           | 8.767                  | 2.672                   | 0.97               |
| 500.0           | 9.166                  | 2.794                   | 0.93               |
| 512.0           | 9.283                  | 2.829                   | 0.92               |
| 600.0           | 10.107                 | 3.081                   | 0.84               |
| 700.0           | 10.983                 | 3.347                   | 0.77               |
| 800.0           | 11.807                 | 3.599                   | 0.72               |
| 824.0           | 11.998                 | 3.657                   | 0.71               |
| 894.0           | 12.542                 | 3.823                   | 0.68               |
| 960.0           | 13.04                  | 3.974                   | 0.65               |
| 1000.0          | 13.334                 | 4.064                   | 0.64               |
| 1218.0          | 14.861                 | 4.529                   | 0.57               |
| 1250.0          | 15.075                 | 4.595                   | 0.56               |
| 1500.0          | 16.68                  | 5.084                   | 0.51               |
|                 |                        |                         |                    |

Page 2 of 5

| 1700.0            | 17.887 | 5.452  | 0.48 |
|-------------------|--------|--------|------|
| 1794.0            | 18.436 | 5.619  | 0.46 |
| 1800.0            | 18.47  | 5.629  | 0.46 |
| 2000.0            | 19.599 | 5.974  | 0.43 |
| 2100.0            | 20.147 | 6.141  | 0.42 |
| 2200.0            | 20.685 | 6.305  | 0.41 |
| 2300.0            | 21.214 | 6.466  | 0.4  |
| 2500.0            | 22.247 | 6.781  | 0.38 |
| 2700.0            | 23.249 | 7.086  | 0.37 |
| 3000.0            | 24.701 | 7.529  | 0.34 |
| 3400.0            | 26.558 | 8.094  | 0.32 |
| 3600.0            | 27.456 | 8.368  | 0.31 |
| 3700.0            | 27.899 | 8.503  | 0.3  |
| 3800.0            | 28.337 | 8.637  | 0.3  |
| 3900.0            | 28.771 | 8.769  | 0.3  |
| 4000.0            | 29.201 | 8.9    | 0.29 |
| 4100.0            | 29.628 | 9.03   | 0.29 |
| 4200.0            | 30.051 | 9.159  | 0.28 |
| 4300.0            | 30.47  | 9.287  | 0.28 |
| 4400.0            | 30.886 | 9.414  | 0.28 |
| 4500.0            | 31.298 | 9.539  | 0.27 |
| 4600.0            | 31.708 | 9.664  | 0.27 |
| 4700.0            | 32.114 | 9.788  | 0.26 |
| 4800.0            | 32.518 | 9.911  | 0.26 |
| 4900.0            | 32.919 | 10.033 | 0.26 |
| 5000.0            | 33.316 | 10.154 | 0.26 |
| 6000.0            | 37.158 | 11.325 | 0.23 |
| 8000.0            | 44.264 | 13.491 | 0.19 |
| 8800.0            | 46.943 | 14.308 | 0.18 |
| 10000.0           | 50.826 | 15.491 | 0.17 |
| 12000.0           | 57.001 | 17.373 | 0.15 |
| \ (C\ \ (D\ (D\ ) |        |        |      |

#### VSWR/Return Loss

| Frequency Band | VSWR  | Return Loss (dB) |
|----------------|-------|------------------|
| 680-960 MHz    | 1.201 | 20.79            |

COMMSCOPE®

**1700–2200 MHz** 1.201 20.79 **2200–2700 MHz** 1.433 14.99

Material Specifications

**Dielectric Material** Foam PE

Jacket Material Non-halogenated, fire retardant polyolefin

Inner Conductor Material Copper-clad aluminum wire

Outer Conductor Material Corrugated copper

Mechanical Specifications

Minimum Bend Radius, multiple Bends25.4 mm | 1 inMinimum Bend Radius, single Bend25.4 mm | 1 in

Number of Bends, minimum 30 Number of Bends, typical 50

 Tensile Strength
 95 kg | 209.439 lb

 Bending Moment
 2.3 N-m | 20.357 in lb

 Flat Plate Crush Strength
 1.8 kg/mm | 100.795 lb/in

### **Environmental Specifications**

Installation temperature  $-40 \,^{\circ}\text{C}$  to  $+60 \,^{\circ}\text{C}$  ( $-40 \,^{\circ}\text{F}$  to  $+140 \,^{\circ}\text{F}$ )

Operating Temperature  $-40 \,^{\circ}\text{C}$  to  $+60 \,^{\circ}\text{C}$  ( $-40 \,^{\circ}\text{F}$  to  $+140 \,^{\circ}\text{F}$ )

Storage Temperature  $-40 \,^{\circ}\text{C}$  to  $+60 \,^{\circ}\text{C}$  ( $-40 \,^{\circ}\text{F}$  to  $+140 \,^{\circ}\text{F}$ )

Attenuation, Ambient Temperature68 °F | 20 °CAverage Power, Ambient Temperature104 °F | 40 °CAverage Power, Inner Conductor Temperature212 °F | 100 °C

Fire Retardancy Test Method NFPA 130-2010 | UL 1666/CATVR

Smoke Index Test Method IEC 61034

**Toxicity Index Test Method** IEC 60754-1 | IEC 60754-2

Packaging and Weights

**Cable weight** 0.13 kg/m | 0.087 lb/ft

Regulatory Compliance/Certifications

Agency Classification

COMMSC PE°

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system